⬅ HOME
PoseidonCTF 2020 Writeups

Writeups for kiona's crypto challs from PoseidonCTF 2020.


Triplet Bits Encryption

crypto (100pts)

I have to encrypt super secret information, so I used triplet bits.

Is it really safe?

Author : kiona

problem.py:

#!/usr/bin/env python3

from hashlib import sha256
from Crypto.Util.number import long_to_bytes, bytes_to_long
from Crypto.Random import get_random_bytes
from flag import flag

def mixkeybit(keybit1, keybit2, keybit3):
    return int(keybit1 or (not(keybit2) and keybit3))

key1 = get_random_bytes(32)
key2 = get_random_bytes(32)
key3 = get_random_bytes(32)

wfile = open('output.txt', 'w')

for _ in range(256):
    flagbin = bin(bytes_to_long(flag))[2:]
    encbin = ""
    for i in range(len(flagbin)):
        key1 = sha256(key1).digest()
        key2 = sha256(key2).digest()
        key3 = sha256(key3).digest()
        keybit1 = int(bin(bytes_to_long(key1))[2:][-1])
        keybit2 = int(bin(bytes_to_long(key2))[2:][-1])
        keybit3 = int(bin(bytes_to_long(key3))[2:][-1])
        encbin += str(mixkeybit(keybit1, keybit2, keybit3) ^ int(flagbin[i]))
    wfile.write(encbin)
    wfile.write('\n')
wfile.close()

output.txt: output.txt

Solution

The encryption algorithm encrypts bits of the flag one by one. It does this by XORing each flag bit with some value that is derived from three (basically random) bits. How the bits are combined is defined in the mixkeybit function:

def mixkeybit(keybit1, keybit2, keybit3):
    return int(keybit1 or (not(keybit2) and keybit3))

We can describe this using a truth table:

k1k_1 k2k_2 k3k_3 k1(¬k2k3)k_1 \lor (\lnot k_2 \land k3)
00 00 00 00
00 00 11 11
00 11 00 00
00 11 11 00
11 00 00 11
11 00 11 11
11 11 00 11
11 11 11 11

Since the input bits are seemingly random, it becomes apparent that the XOR value will be 00 less often than 11. Thankfully, we're given 256 encryptions of the same message! This means we can determine each bit of the message and therefore recover the entire message.

We'll do this by analysing all 256 ciphertexts bit by bit. For each bit position in the message, let bb be the value that occurs the least across all 256 ciphertexts. Then, it is very very likely that this bit is the flag bit we are interested in.

Solve script:

cts = open('./output.txt').read().splitlines()
Z = zip(*cts)
def least_freq(lst):
    return '1' if lst.count('0') > lst.count('1') else '0'
flag = ''.join(least_freq(B) for B in Z)
print(bytes.fromhex(hex(int(flag, 2))[2:]).decode())

Flag: Poseidon{7h3_u53_0f_pr0b4b1l17y_15_57r0n6}


discrete log

crypto (908pts)

I heard some cryptosystem uses discrete logarithm.

It is hard problem, isn't it?

I encrypted the flag with 4095bit modulus...

Author : kiona

problem.py:

#!/usr/bin/env python3

from Crypto.Util.number import isPrime, getPrime, getRandomRange, bytes_to_long
from flag import flag

def keygen():
    p = getPrime(1024)
    q = p**2 + (1<<256)
    while not(isPrime(q)):
        q += 2
    n = p**2 * q
    while True:
        g = getRandomRange(2, n-1)
        if pow(g, p-1, p**2) != 1:
            break
    return (g, n), p

def encrypt(pubkey, msg):
    g, n = pubkey
    msgint = bytes_to_long(msg)
    encint = pow(g, msgint, n)
    return encint

wfile = open('output.txt', 'w')

pubkey, privkey = keygen()

print(privkey)
wfile.write('g = ' + str(pubkey[0]) + '\n')
wfile.write('n = ' + str(pubkey[1]) + '\n')

encint = encrypt(pubkey, flag)
wfile.write('enc = ' + str(encint) + '\n')

wfile.close()

output.txt:

g = 172749132303451034825184289722866887646478207718904031630914096520683022158034517117605936723970812800902379716660696042889559048647206589145869496198395421965440272135852383965230458163451729744948637995163776071512309614027603968693250321092562108610034043037860044795655266224453184735452048413623769098671844195106558284409006269382544367448145088128499405797694142037310933061698125568790497068516077791616445318819525778890129259953967830407023305805724947609041398183006524760589480514375528363943261764527906775893795625189651746165941438248136930298545695110631212696683271254403308539994170329875688236599305478130030194371971383054083049610267982461416568688720562725217837462387935392946474596966349477680685726377666929540130924122398746591270899232208239961618302848348129375606841006687727574503519146164506867574157671109933022528435615415554171024171300585408907077259610240139419075684581512703943171162496513070572546968852202777002845137863414028314025114932581655385254082418111977242759980115915504202336380850329162861826132885827910210346708045087589916666711356848614195462267049823085141386868421005551877773672329046391854000523197388175515628464457551891476514779819019668102328395639607489673081022505099
n = 204964538005458094391574690738766104196067587947267165575341074475716043971842449550067337731195102944823593489101699510575531541895593939634478254160200896755891641047742120885540191258962212405226135805491196590351987106011483652123110409148411537235255207358696047015199616340882291357173918540392964501976492251077110794432722042202109934588262870543755493029748475008610896164870659893013085704495216717998116109896882952474884270785733861739050889113464275228554841649603978281963688294995328883256317404081735364738985601286409677647577052211093127231530844271726386293348738817021732679704754961436390654856963930636538653822714234978179695778198536592408645222590877027896792957778186555118729335564281356291031440583078132397563914801937048297147819254611598144027963328749607393168101280779708669908245620694587176737529113823312930871616550632035759346759393976128246210013752530912953330415598837661326422094379798718827988692760848583517436061574821754507293943235476923624688378441177770313101393581916112910947153305055575974237171438666919114843946573283829704010962833299593770650238349021406868347635157566404829030358844616367849771415905381318344903398551946493709551783771889575282972265629264217620138873678733
enc = 58749077215207190492371298843854826665007067693641554277597021927783439106518176607848876784025881251057880587477892585242567469682290542409002363284991521084199535617805983767364935247518813883871587009725229910084882524866335007624383374126379502610933045897762967063766174922757656816300993939273687091280630401460905159739072179134897626330594985795970230333335492872721173603390854317323095769925904629970032658376378937924244589208035572848434030889091930182042226202356340798415809817722086119981262671540923062830870681500341640178082497128371291359953884993700348396920219975667972939044100089402796215197615549948516999318565775626034391795498234335228509335613253342179818268681240653806015040771731154600343889814141382273506238199460016081871283682838719833841393528105371834961952754168257271394981634141286257602629174903644009990944563870674888760807045240859970974837258567236802649772719645362361127488126570702845624169598462415354350277654287009645871674305081755840523910495569765451437265785385267255452210836618705384598344351666486694835670072372776263570462639412759703397195350879217144135006968472391258993407007505079063659488976186871280542665310586453539153772026697145449262179967269376262891840972187

Solution

This was actually a very easy challenge, but it had quite few solves probably because the cryptosystem being used isn't known very well(?). The cryptosystem being used is the Okamoto-Uchiyama cryptosystem. Its security is based on the integer factorisation problem.

In short, this is how the cryptosystem works (as was in the challenge):

Key generation

Suppose Bob wants to send Alice a message. Alice generates two large primes pp and qq and computes n=p2qn = p^2 q. She then chooses a random integer 2g<n2 \leq g < n such that gp1≢1(modp2)g^{p-1} \not\equiv 1 \pmod {p^2}. Her public key is (n,g)(n, g) and her private key is the factorisation of nn.

Encryption

Bob encrypts a message m<pm < p by computing c=gmmodnc = g^m \mod n using Alice's public key. He sends cc to Alice.

Decryption

Alice decrypts Bob's encrypted message by computing

a=(cp1modp2)1pb=(gp1modp2)1p\begin{aligned} a &= \frac{(c^{p-1} \mod {p^2}) - 1}{p} \\ b &= \frac{(g^{p-1} \mod {p^2}) - 1}{p} \end{aligned}

and then computing

mab1(modp)m \equiv ab^{-1} \pmod p

Note: The actual cryptosystem introduces randomness by adding another parameter hgn(modn)h \equiv g^n \pmod n to the public key, and encrypting by computing cgmhr(modn)c \equiv g^m h^r \pmod n for a random rr.

Solving the challenge

It turns out the factorisation problem is easy in this situation because qq is generated from pp, and we can write a quartic in pp with known coefficients. Specifically, qq is the next prime after p2+2256p^2 + 2^{256}. Prime gaps are quite small, so we can write q=p2+2256+δq = p^2 + 2^{256} + \delta for some brute-forcable δ\delta. Then

n=p2q=p2(p2+2256+δ)\begin{aligned} n &= p^2 q \\ &= p^2 (p^2 + 2^{256} + \delta) \end{aligned}

After we recover the prime factorisation of nn, we can decrypt as described above.

Solve script:

n = 204964538005458094391574690738766104196067587947267165575341074475716043971842449550067337731195102944823593489101699510575531541895593939634478254160200896755891641047742120885540191258962212405226135805491196590351987106011483652123110409148411537235255207358696047015199616340882291357173918540392964501976492251077110794432722042202109934588262870543755493029748475008610896164870659893013085704495216717998116109896882952474884270785733861739050889113464275228554841649603978281963688294995328883256317404081735364738985601286409677647577052211093127231530844271726386293348738817021732679704754961436390654856963930636538653822714234978179695778198536592408645222590877027896792957778186555118729335564281356291031440583078132397563914801937048297147819254611598144027963328749607393168101280779708669908245620694587176737529113823312930871616550632035759346759393976128246210013752530912953330415598837661326422094379798718827988692760848583517436061574821754507293943235476923624688378441177770313101393581916112910947153305055575974237171438666919114843946573283829704010962833299593770650238349021406868347635157566404829030358844616367849771415905381318344903398551946493709551783771889575282972265629264217620138873678733
g = 172749132303451034825184289722866887646478207718904031630914096520683022158034517117605936723970812800902379716660696042889559048647206589145869496198395421965440272135852383965230458163451729744948637995163776071512309614027603968693250321092562108610034043037860044795655266224453184735452048413623769098671844195106558284409006269382544367448145088128499405797694142037310933061698125568790497068516077791616445318819525778890129259953967830407023305805724947609041398183006524760589480514375528363943261764527906775893795625189651746165941438248136930298545695110631212696683271254403308539994170329875688236599305478130030194371971383054083049610267982461416568688720562725217837462387935392946474596966349477680685726377666929540130924122398746591270899232208239961618302848348129375606841006687727574503519146164506867574157671109933022528435615415554171024171300585408907077259610240139419075684581512703943171162496513070572546968852202777002845137863414028314025114932581655385254082418111977242759980115915504202336380850329162861826132885827910210346708045087589916666711356848614195462267049823085141386868421005551877773672329046391854000523197388175515628464457551891476514779819019668102328395639607489673081022505099
enc = 58749077215207190492371298843854826665007067693641554277597021927783439106518176607848876784025881251057880587477892585242567469682290542409002363284991521084199535617805983767364935247518813883871587009725229910084882524866335007624383374126379502610933045897762967063766174922757656816300993939273687091280630401460905159739072179134897626330594985795970230333335492872721173603390854317323095769925904629970032658376378937924244589208035572848434030889091930182042226202356340798415809817722086119981262671540923062830870681500341640178082497128371291359953884993700348396920219975667972939044100089402796215197615549948516999318565775626034391795498234335228509335613253342179818268681240653806015040771731154600343889814141382273506238199460016081871283682838719833841393528105371834961952754168257271394981634141286257602629174903644009990944563870674888760807045240859970974837258567236802649772719645362361127488126570702845624169598462415354350277654287009645871674305081755840523910495569765451437265785385267255452210836618705384598344351666486694835670072372776263570462639412759703397195350879217144135006968472391258993407007505079063659488976186871280542665310586453539153772026697145449262179967269376262891840972187

F = IntegerModRing(n)
g = F(g)
enc = F(enc)

R.<x> = ZZ[]
for delta in range(0, 10000, 2):
    poly = (x^2) * (x^2 + (1<<256) + delta) - n
    roots = poly.factor()
    for r,_ in roots:
        p = r[0] 
        if p.is_prime():
            break
    if p.is_prime():
        break

print('[+] found p:', p)
q = n//(p**2)
print('[+] found q:', q)

c = enc
a = ZZ(pow(c, p-1, p**2) - 1)//p
b = ZZ(pow(g, p-1, p**2) - 1)//p
b_ = inverse_mod(b, p)
m = a*b_ % p

print(bytes.fromhex(hex(m)[2:]))

Flag: Poseidon{l064r17hm_fr0m_7h3_cycl1c_6r0up}